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Chagelishvili et al. �Phys. Rev. Lett. 79, 3178 �1997�� discovered a linear mechanism of acoustic wave
emergence from vorticity fluctuations in shear flows. This paper illustrates how this “nonresonant” phenom-
enon is related to the non-normality of the operator governing the linear dynamics of disturbances in shear
flows. The non-self-adjoint nature of the governing operator causes the emergent acoustic wave to interact
strongly with the vorticity disturbance. Analytical expressions are obtained for the nondivergent vorticity
perturbation. A discontinuity in the x component of the velocity field corresponding to the vorticity disturbance
was originally identified to be the cause of acoustic wave emergence. However, a different mechanism is
proposed in this paper. The correct “acoustic source” is identified and the reason for the abrupt nature of wave
emergence is explained. The impact of viscous damping is also discussed.
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I. INTRODUCTION

A linear mechanism of acoustic wave emergence from
vorticity fluctuations in an unbounded shear flow has been
proposed by Chagelishvili et al. �1�. This paper illustrates
how this phenomenon is related to the non-normality of the
operator governing the linear dynamics of disturbances in
shear flows. Transient growth is known to occur even in
dynamical systems which are stable according to the canoni-
cal linear theory due to the non-normality of the underlying
operator. The non-self-adjoint nature of an operator causes
the eigenvectors to become nonorthogonal. It is well known
that when the eigenvectors are not orthogonal, the resultant
can show transient growth even when all the individual
modes decay. This transient growth can cause the amplitudes
to rise to significantly high values from where nonlinearities
may cause further amplification and take the system to limit
cycle oscillations. This phenomenon has been well under-
stood in plane Couette, plane Poiseuille, and pipe Poiseuille
flows �2,3�, coupled-mode flutter �4�, combustion instability
�5,6�, etc. When the operator that describes the linear dynam-
ics of a system is non-normal, its eigenvalues are not the
appropriate tools for analyzing the system as they character-
ize only its asymptotic behavior. The usefulness of singular
value decomposition in analyzing non-normal systems has
been illustrated �7,8�.

An approach which has received considerable attention is
the Kelvin’s method wherein the problem is analyzed from a
frame of reference that is fixed to the mean flow and the
temporal evolution of the spatial Fourier harmonics of the
disturbances is studied. In other words, the spatial inhomo-
geneity which arises due to shear is converted into a tempo-
ral inhomogeneity by a suitable transform. This nonmodal
approach has been driving great advances in the study of
evolution of acoustic and vorticity modes in shear flows
�9–15�, MHD waves �16,17�, coupling and transformation of
waves in shear and hydromagnetic flows �18,19�, and stabil-
ity of compressible plane Couette flow �20,21� and has

helped to form a new conjuncture of transition to turbulence
�22,23�. The generality of Kelvin’s solutions and the possi-
bility of extending it to systems exhibiting complex spatial
inhomogeneities other than convective ones have been ex-
plained �24�.

The primary objective of this paper is to demonstrate how
the linear mechanism of acoustic wave emergence from vor-
ticity disturbances is related to non-normality. The system
exhibits rich physics which include interaction between
acoustic waves and vorticity disturbances and transient
growth by large factors even in the presence of viscosity
under which condition, it shows asymptotic stability. The
paper is organized as follows. In Sec. II, analytical expres-
sions are obtained for the vorticity perturbation. It is shown
that the emergent acoustic wave interacts strongly with the
vorticity mode. In Sec. III, the non-normality of the nonau-
tonomous operator obtained by performing the Lagrangian
transformation is quantified by calculating the Henrici index
of the operator as a function of time. The correct “acoustic
source” is identified in Sec. IV. The physics of the mecha-
nisms is explained in Sec. V. The impact of viscous damping
is discussed in Sec. VI. The concluding remarks are pre-
sented in Sec. VII.

II. MATHEMATICAL FORMULATION

Consider an unbounded, inviscid, planar flow with con-
stant density �0 and constant velocity shear U0 �Ay ,0�. The
parameter A is assumed to be positive. Now the continuity
and momentum conservation equations are linearized and
separated into steady and unsteady components to obtain the
following sets of equations �1�:

��t + Ay�x��� + �0��xux + �yuy� = 0, �1�

��t + Ay�x��0ux + A�0uy = − �xp�, �2�

��t + Ay�x��0uy = − �yp�, �3�

p� = cs
2��, �4�
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where cs is the speed of sound. In deriving Eqs. �1�–�4�, each
flow quantity q �r , t� has been assumed to consist of a steady
mean flow quantity q0 �r� and an unsteady flow quantity q�
�r , t�, which represents a small perturbation about q0 �r�. The
unsteady flow quantities are assumed to be small enough so
that terms involving their products are negligible. The un-
steady flow quantities include contributions from acoustic
and vorticity disturbances. The transformation x1=x−Ayt,
y1=y, t1= t, transforms the nonhomogeneity in space to time.
In the new coordinate frame, the spatial Fourier harmonic’s
�SFH� wave numbers depend on time �12�. A SFH of the

form ��0�=�̃ �kx ,ky�0��exp�ikxx+ iky�0�y� at t=0, where
�= �vx ,vy ,�� , p�� evolves into

��t� = �̃�kx,ky�t�,t�exp�ikxx + iky�t�y� , �5�

ky�t� = ky�0� − kxAt . �6�

From this point forward, all the quantities in this paper are in
the wave-number space and for simplicity, the “tilde” sign is
omitted. Substitution of Eqs. �5� and �6� into Eqs. �1�–�3� and
nondimensionalization of physical quantities and parameters

d = i��/�0, v = u/cs, R = A/cskx, � = cskxt,

�� = ky�0�/Rkx, ���� = ky���/kx = R��� − �� �7�

gives the following set of ordinary differential equations in
time, which can be solved numerically �1�:

��d = vx + ����vy , �8�

��vx = − Rvy − d , �9�

��vy = − ����d . �10�

The instantaneous vorticity ���� in the z direction is given
by

���� = i�kxvy��� − ky���vx���� . �11�

Differentiating Eq. �11� with respect to � gives

��� = iRkx��d . �12�

The solution to Eq. �12� is given by �=�a+�v, where �a
�the acoustic component� satisfies ���a= iRkx��d and �v �the
vortical component� satisfies ���v=0. Thus, �v is time-
invariant whereas �a evolves with time as �a���= iRkxd���
+C1, where C1 is a constant of integration. The fact that the
vorticity disturbance is nondivergent has been used to reach
this conclusion. The explanation for the time invariance of
�v��� is as follows. We know that vorticity mode is con-
vected by the mean flow. Hence for an observer moving with
the flow, it appears to be a frozen pattern in space. From Eq.
�12�, we get

���� = iRkxd��� + C , �13�

where C is the constant of integration. If the initial distur-
bance is purely vortical, then C equals �v�0�. The first term
on the right-hand side of Eq. �13� corresponds to �a���, an
acoustic component. The second term which is time-
invariant corresponds to �v���, a vortical component

�v��� = �v�0� = ikxvyv�0� − iky�0�vxv�0� . �14�

The velocity field corresponding to the vorticity mode is di-
vergence free, which implies that

kxvxv��� + ky���vyv��� = 0. �15�

Using Eqs. �14� and �15�, the velocity fluctuations corre-
sponding to the vorticity mode can be analytically obtained
as

vxv��� = ���0�vxv�0� − vyv�0�������/�1 + ����2�� , �16�

vyv��� = − �1/�����vxv��� . �17�

The time evolutions of vxv and vyv are shown in Figs. 1 and
2. From Eq. �16�, it is clear that vxv is continuous at �=�� as
opposed to the observation made in �1� that vxv is discontinu-
ous. Apart from that, the analytical solution shows excellent
agreement with the numerical solution presented in �1�. From
Eq. �16�, we also see that when � is close to ��, the time
evolution of vxv is approximately linear with a sharp gradient
which seems to have been interpreted as a discontinuity ear-
lier �1�.

The total energy of the SFH in k space �wave-number
space� is defined as

Etotal = 1
2 ��vx�2 + �vy�2 + �d�2� ,

where vx=vxv+vxa , vy =vyv+vya , d=da. The subscripts “v”
and “a” represent vorticity and acoustic disturbances, respec-
tively.
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FIG. 1. Evolution of vxv with � for initial conditions of vxv�0�
=0.08, vyv�0�=−0.01, d�0�=0, vxa�0�=0, vya�0�=0, R=0.4, ��0�
=8, and ��=20.
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FIG. 2. Evolution of vyv with � �same initial conditions as
Fig. 1�.
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The total energy is given by Etotal=Ea+Ev+Einteraction,
where Ea= 1

2 �vxa
2 +vya

2 +da
2�, Ev= 1

2 �vxv
2 +vyv

2 �, and Einteraction
=vxvvxa+vyvvya accounts for the interaction between the
acoustic and vorticity modes. If the acoustic and vorticity
disturbance vectors are orthogonal, then Einteraction equals
zero. If the base flow is uniform, then the nondivergent vor-
ticity mode and the irrotational acoustic mode are orthogonal
eigenmodes of the system. However, in the presence of
shear, the acoustic mode can develop rotational character
�9,25�. This is also evident from Eq. �13�. It is important to
note that in the presence of shear, the acoustic and vorticity
modes are not the eigenmodes and hence their evolution is
coupled �25,26�. Once the acoustic mode develops rotational
character, it is not orthogonal to the vorticity mode and hence
they interact. This would mean that the total energy is not
equal to the sum of the energies of the individual modes. A
plot of the energies corresponding to the individual modes,
interaction term, and the total energy is plotted as a function
of time in Fig. 3. At the initial stages of acoustic wave emer-
gence, the acoustic energy and the interaction term exactly
cancel out each other, making no net contribution to the total
energy. At later stages, the energies of the vorticity mode and
the interaction term die down, making the total energy al-
most equal to the acoustic energy.

III. ROLE OF NON-NORMALITY

The Henrici index characterizes the amount of non-
normality of an operator. The Henrici index of an operator A
is defined as

He�A� = V�A�/�A2� ,

V�A� = �AA† − A†A� .

Equations �8�–�10� can be written in the matrix form as

��X = A���X ,

where X= �d vx vy�T,

A��� = 	 0 1 ����
− 1 0 − R

− ���� 0 0

 .

The Henrici index of the nonautonomous operator governing
the linear dynamics of the system of interest is plotted as a

function of time in Fig. 4. It can be clearly seen that the
system is almost self-adjoint initially. The degree of non-
normality grows, reaches a maximum value, and then decays
again. The phenomenon of emergence of acoustic wave from
vorticity perturbation takes place at the time when the non-
normality of the governing operator hits a peak. Henrici in-
dex is a good measure of the amount of non-normality of an
operator as long as the dimension of the operator does not
change with time. The angle between the acoustic and vor-
ticity vectors is plotted as a function of time in Fig. 5. It is
seen that the angle is greater than � /2 at the moment the
acoustic wave emerges and it eventually decays to � /2. This
explains why the interaction is strongest near �=�� and falls
to zero at large times.

IV. ACOUSTIC SOURCE

The discontinuity in vxv was originally identified to be the
cause of emergence of acoustic waves �1�. However, from
Sec. II, it is clear that vxv is continuous at �=��. From Eqs.
�8�–�10�, we can easily derive the following second-order
differential equation:

��
2d + �1 + ����2�d = − 2Rvy��� . �18�

Equation �18� can be written in matrix form as

��Y = B���Y + C��� ,

where Y = �d ��d�T,

B��� = � 0 1

− �1 + ����2� 0
� ,
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FIG. 3. Evolution of energy with time �same initial conditions as
Fig. 1�.
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FIG. 4. Variation of Henrici index of the operator with time
�same initial conditions as Fig. 1�.
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FIG. 5. Variation of the angle between acoustic and vorticity
vectors with time �same initial conditions as Fig. 1�.
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C��� = �0 − 2Rvy����T.

It is easy to see that Eq. �18� is in the form of Lighthill’s
famous acoustic analogy �27�, with the source terms corre-
sponding to nonlinear velocity coupling, viscous dissipation,
and entropy being neglected. However, it is important to re-
alize that the operator ��

2 in the convected coordinate system
is equivalent to the operator ���+Ay�x�2 in the laboratory
frame and hence Eq. �18� is actually a convective form of
Lighthill’s equation. Note that the second term on the left-
hand side of Eq. �18� represents the Laplacian operator mul-
tiplied by −1 /kx

2. The source term is readily identified as
arising due to interaction of the velocity fluctuations with the
mean shear. For ����, the right-hand side becomes
−2Rvyv��� for which analytical expression is known.

Equation �18� can be solved numerically to verify the
abrupt nature of acoustic wave emergence. The characteristic
frequencies of B��� are i�1+����2�1/2 and −i�1+����2�1/2

which represent the “slow”’ and “fast” acoustic modes, re-
spectively, in the transformed coordinate system. As � ap-
proaches ��, the characteristic frequencies of B��� become
closer and closer to the forcing frequency which is zero �vor-
ticity driving is nonperiodic�. From Fig. 2, it can be inferred
that as � approaches ��, the source term becomes stronger
and stronger, hitting a peak at �=��. Also it is well known
that when an operator is non-normal, there can be a large
response even when the forcing frequency is far away from
the characteristic frequencies. Thus, the non-normal nature
of B��� also plays a crucial role. All these factors are collec-
tively responsible for the emergence of density fluctuations
at around �=16. Equation �18� also explains why the phe-
nomenon is not “strongly noticeable” at very low values of
the shear parameter R �1,28�. However, it is important to
note that for ����, the right-hand side becomes
−2R�vyv���+vya���� and the acoustic velocity fluctuations
modulate its own density fluctuations by interacting with the
mean shear. This is the crucial mechanism which makes the
density fluctuations grow even after the vorticity “driving”
dies down.

V. PHYSICS OF THE MECHANISMS

First, we consider the physics of exchange of energy be-
tween the mean flow and “pure” acoustic and vorticity
modes. A pure vorticity mode being nondivergent should
have its velocity fluctuation vector �Vv� perpendicular to the
wave number vector �K�. We consider the case ky��� /kx�0.
A virtual fluid particle at a distance y from the x axis has a
total velocity of U=Ayex+Vv��� at time �. After a small in-
terval of time 	�, the particle drifts up to a height of y+	y
because of Vv���, making the total velocity of the particle
U��+	��=A�y+	y�ex+Vv��+	��. From Eq. �8�, it is clear
that the vorticity mode being nondivergent cannot “directly”
contribute to the potential energy which manifests itself in
the form of density fluctuations, though it does contribute to
the potential energy indirectly by driving the acoustic distur-
bance. Since the fluid particle is not “compressed,” its total
velocity remains constant �conservation of momentum� and
hence Vv��+	��=Vv���−A	yex. It is easy to visualize that if

ky��� /kx�0, the angle between Vv��� and −A	yex is less
than � /2 and hence �Vv��+	���� �Vv����; the vorticity mode
gains energy from the mean flow. By similar arguments,
it can be shown that the vorticity mode gives energy to
the mean flow if ky��� /kx�0. This can be confirmed analyti-
cally. From Eqs. �16� and �17�, it can be shown that ��Ev
= ��v�0� /kx�2�R���� / �1+����2�2�, where R is a positive con-
stant. Thus, Ev grows for �����0 and decays for �����0.
This explains the transient growth followed by decay of the
energy of the vorticity mode as seen in Fig. 3. Careful ex-
amination reveals that the above explanation is closely re-
lated to the well-known “lift-up mechanism” �29,30�.

A pure acoustic mode being irrotational should have its
velocity fluctuation vector �Va� parallel to the wave-number
vector �K�. Consider a fluid particle which drifts in the posi-
tive y direction under the influence of Va. The particle un-
dergoes two processes, namely, the kinematic process in
which the particle gains or loses kinetic energy from the
mean flow and the interaction process in which the kinetic
energy is converted into potential energy. To gain a better
understanding of the physics of exchange of energy between
the mean flow and the acoustic mode, we dismember the
above two processes in time �9�. In other words, we assume
that the processes happen one after the other. In reality, the
two processes occur simultaneously and the temporal dis-
membering is done only to gain a better understanding of the
phenomena of exchange of energy. Proceeding in exactly the
same way as mentioned above, we can seen that if ky��� /kx
�0, the angle between Va��� and −A	yex is greater than � /2
and hence �Va��+	���� �Va����; the acoustic mode gives en-
ergy to the mean flow. It can also be shown that the acoustic
mode gains energy from the mean flow if ky��� /kx�0.

The above conclusions can be arrived at mathematically
as follows. From Eqs. �8�–�10�, it is easy to show that ��E
=−Rvxvy. Now a “divergence-free” constraint will cause vx
and vy to be negatively correlated in the regime �����0 and
positively correlated in the regime �����0, which would
mean that the disturbance energy grows if �����0 and de-
cays if �����0. On the other hand, an “irrotational” con-
straint will cause vx and vy to be positively correlated in the
regime �����0 and negatively correlated in the regime
�����0.

From Fig. 3, we see that the vorticity mode behaves ex-
actly as predicted using physical arguments. The acoustic
energy shows a transient growth, followed by a momentary
dip, and then continues to grow. The emergent acoustic mode
has a rotational component and a divergent component. The
velocity fluctuation vector Va� will be at an angle to K in this
case. The rotational component behaves like the vorticity
mode and hence gains energy from the mean flow if ����
�0 and gives back energy to the mean flow if �����0.
From Eq. �18�, it is clear that the vorticity mode “drives” the
acoustic mode. Thus, when the vorticity mode gains energy
from the mean flow ������0�, the driving becomes stronger
and it becomes weaker when the vorticity mode starts dying
down ������0�. These two factors are responsible for the
transient growth followed by the momentary dip of the
acoustic energy near �=��. In the regime �����0, the diver-
gent component gains energy from the mean flow and this
eventually causes the total acoustic energy to grow. At large
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times, the rotational component dies down and Va� becomes
parallel to K or orthogonal to Vv as is seen from Fig. 5. This
causes Einteraction to go to zero at large times as seen in Fig. 3.

The fact that the acoustic disturbance assumes rotational
character is evident from Eq. �13�. For understanding how an
acoustic disturbance becomes rotational, we consider an ir-
rotational initial disturbance. This would mean that V� is
parallel to K. Now from Eq. �6�, we understand that the
wave-number vector K tilts in the direction of the shear as �
increases. Also, the additional velocity gained by the pertur-
bation by virtue of momentum conservation �−A	yex� has a
component perpendicular to K at all times except at �=��

when K is aligned along the x axis. Both these factors can
cause V� and K to be misaligned to each other. In other
words, they cause an originally irrotational perturbation to
assume rotational character. Equation �12� can be rewritten
as

��� = iRkx�vx + ����vy� . �19�

The first term on the right-hand side of Eq. �19� arises be-
cause of the rotation of K and the second term arises due to
the additional velocity gained by the disturbance �−A	yex�
not being parallel to K.

VI. IMPACT OF VISCOUS DAMPING

Proceeding in the same way as in Sec. II and including the
effects of viscous damping, the governing equations can be
written as

��d = vx + ����vy , �20�

��vx = − Rvy − d − 1/�3Re���4 + 3����2�vx + ����vy� ,

�21�

��vy = − ����d − 1/�3Re������vx + �3 + 4����2�vy� ,

�22�

where Re=cs /kx
 is a characteristic Reynolds number for the
problem. From Eqs. �21� and �22�, it can be shown that

���v = − 1/Re�1 + ����2��v, �23�

�v��� = �v�0�exp�− 1/Re�� + R2/3�����3 − ��� − ��3��� .

�24�

Using Eqs. �15� and �24�, vxv and vyv can be analytically
obtained as

vxv��� = ���0�vxv�0� − vyv�0�������/�1 + ����2��

�exp�− 1/Re�� + R2/3�����3 − ��� − ��3��� , �25�

vyv��� = − �1/�����vxv��� . �26�

The total wave number of the disturbances increases with
time, which would imply a higher rate of viscous damping.
Hence, the inviscid growth cannot be sustained as �→�
�21�. The effect of viscous damping on the transient and
long-term behaviors is investigated.

The time evolution of the energy of the vorticity mode,
which reflects the transient behavior of the system is shown
in Fig. 6 for inviscid �Re→�� and viscous �Re=5000� cases
for the same initial conditions as Fig. 1. As expected, we see
a fall in the peak value of energy amplification and a faster
decay to zero at large times in the viscous case. From Eqs.
�20�–�22�, it can be shown that ��E=−Rvxvy −1 / �3Re���4
+3����2�vx

2+ �3+4����2�vy
2+2����vxvy� from which it is evi-

dent that for a finite value of Re, the rate of energy dissipa-
tion due to viscous effects would overcome the rate at which
the disturbance gains energy from the mean flow at large
times.

To get a better understanding of the asymptotic behavior
of the system, we make the following simplifying assump-
tions. From Sec. V, we know that at large times, the rota-
tional components of the disturbance will have died down
and hence vy ���� vx. Based on this assumption, it can be
easily shown that the total energy of the disturbance decays
for all ���c, where �c is the solution of R����+4 / �3Re��1
+����2�2=0. Further, using the fact that ����21 �at large
times�, �c can be obtained as �c=��+ �3Re /4R2�1/3. From the
expression for �c, we can conclude that it remains finite for
all finite values of Re. Thus the disturbance energy eventu-
ally decays to zero for all values of Re, except in the inviscid
case when Re→�. Also for the inviscid case, �c→� indi-
cating asymptotic instability.

The time evolution of the total energy, normalized with
the energy of the initial disturbance, is shown in Fig. 7 for
the viscous case �Re=5000�. As expected, we see that the
energy of the disturbance does not increase indefinitely, but
eventually decays to zero under the influence of the acceler-
ated viscous dissipation rate caused by the increasing total
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FIG. 6. Evolution of energy of vorticity disturbance with time
for the inviscid and viscous cases �same initial conditions as Fig. 1�.
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FIG. 7. Evolution of total energy with time for Re=5000 �same
initial conditions as Fig. 1�.
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wave number. The momentary dip in the total energy occurs
when the vorticity mode starts giving back energy to the
mean flow. Now, the acoustic mode starts gaining energy
from the mean flow. However, the rate of loss of energy due
to viscous effects becomes greater than the rate at which the
acoustic mode gains energy from the mean flow eventually.
Thus, under the influence of viscous damping, the system
shows linear stability. However, the initial energy of the per-
turbation is amplified by large factors, at which point non-
linearities could play a significant role in causing further
instability. For the problem of interest, the optimal growth of
energy density has been calculated �21�. There have been
some recent attempts to study the nonlinear effects �31,32�.
The impact of nonlinearities in the light of this paper will be
presented in a forthcoming paper.

VII. CONCLUSIONS

The impact of non-normality on the “nonresonant” phe-
nomenon of emergence of acoustic waves from aperiodic

vorticity disturbances has been studied. It is found that the
phenomenon occurs when the non-self-adjoint nature of the
underlying operator hits a peak. The acoustic waves develop
rotational character under the influence of shear and hence
they interact with the vorticity perturbation. The relevant
acoustic source has been identified and the abrupt nature of
the phenomenon is quantified. The time evolution of the en-
ergies corresponding to the individual modes of disturbances
and an additional term arising due to their interaction have
been plotted and their behavior explained through physical
arguments. The inviscid growth is not sustained under the
influence of viscous dissipation and the disturbance energy
decays to zero at large times. Transient growth by large fac-
tors is observed due to non-normality of the governing op-
erator which could “trigger” nonlinear instabilities.
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